

Level-2 Shared Cache versus Level-2 Dedicated Cache for Homogeneous Multicore

Embedded Systems

Abu ASADUZZAMAN, Manira RANI

Computer Science and Engineering Department, Florida Atlantic University

Boca Raton, Florida 33431, USA

and

Darryl KOIVISTO

Architecture Modeling Group, Mirabilis Design, Inc., 3000 Scott Blvd, Suite 201

Santa Clara, CA 95054, USA

ABSTRACT

Multicore brings tremendous amount of processing speed.

On the contrary, it offers challenges for embedded systems

as embedded systems suffer from limited resources. Various

cache memory hierarchies are proposed to satisfy the

requirements of different systems. Traditionally, level-1

cache memory is dedicated to each core. However, level-2

cache can be shared (like Intel Xenon) or dedicated (like

AMD Athlon). Level-2 shared cache enables each core to

dynamically use up to 100% of available CL2. Level-2

dedicated caches help each core to reduce latency when

there is data / code sharing between the cores. However, it

is not clear how level-2 shared and dedicated cache

hierarchies should impact on the performance and total

energy consumption for a set of applications. In this paper,

we evaluate the impact of level-2 cache hierarchies (shared

versus dedicated) on the performance and total energy

consumption for homogeneous multicore embedded

systems. We use VisualSim simulation tool to model the

target architectures (one with shared CL2 and the other one

with dedicated CL2). We use FFT, MI, and DFT workload

(generated using Heptane package) to run the simulation

program. Experimental results show that for negligible

interconnection delay, level-2 shared cache hierarchy

outperforms level-2 dedicated cache hierarchy.

Keywords––Multicore Embedded System, Level-2
Shared Cache, Level-2 Dedicated Cache, Performance

Modeling, and Power-Aware Design

1. INTRODUCTION

Cache memory is first appeared in the IBM System/360

Model 85 computer in 1968 to improve performance by

reducing the speed gap between the CPU and the main

memory. Almost immediately after that all gigantic chip-

vendors introduced cache to their processors [1][2]. Today,

processors are having multiple processing cores and most

processors have level-1 cache (CL1) and level-2 cache

(CL2) [3][4][5][6]. The demand of multicore embedded

systems is increasing and billions of transistors are possible

in a single chip. As a result, the trend of using multicore

systems is expected to increase for the next few decades. In

a multicore processor, two or more independent cores are

combined into a die. Usually, each core has its own CL1 –

CL1 may be split into instruction (I1) and data (D1) caches.

Most processors have unified CL2 – CL2 may be shared by

the cores or distributed and dedicated to each core

[7][8][9]. Intel’s Advanced Smart Cache works by sharing

CL2 among the cores. It is optimized for multicore

processors to improve performance. AMD's multicore

processors have dedicated CL2. With cache memory, the

system consumes more energy and cache makes the system

more unpredictable [10][11][12][13][14][15][16]. It can be

argued that neither of these two level-2 cache hierarchies is

better for all workloads. The shared hierarchy

outperforming the dedicated one on workloads with high

level of data or code sharing as it simplifies cache

coherence and eliminates coherency traffic between

multiple dedicated caches at the same level. The opposite

may be true for workloads composed of independent

threads with little sharing [18].

Multicore is a new direction for modern computing. In

multicore embedded systems, performance and energy

consumption are significantly affected by the cache memory

hierarchy and applications. More cache miss means

decrease in performance and increase in energy

consumption. Various techniques are being used to reduce

cache miss rate. Recently published articles show that

multicore design improves the performance/energy ratio

[4][5][7][13][15] by executing more number of instructions

per cycle at a lower frequency. However, it is unknown how

the level-2 cache hierarchies (shared and dedicated) impact

on the performance and energy consumption. In this work,

we focus on the impact of level-2 cache memory hierarchies

(shared versus dedicated) on performance and total energy

consumption.

The outline of his paper is as follows. Contemporary level-2

cache memory hierarchies used in popular multicore

processors are described in Section 2. Some articles related

to cache modeling in multicore systems are presented in

Section 3. Section 4 explains experimental details used in

this work. In Section 5, the simulation results are discussed.

Finally, we conclude our work in Section 6.

2. LEVEL-2 CACHE IN MULTICORE

PROCESSORS

Almost every PC built since the first cache memory

appeared in IBM System/360 computer in 1968 has some

sort of cache memory. In early 1990s, Intel 486DX4 and

Pentium included off-chip level-2 cache. Contemporary

multicore processors usually have dedicated level-1 cache

and shared (example: Intel Xenon) or dedicated (example:

AMD Athlon) level-2 cache (see Figure 1). Usually, level-2

cache resides on the motherboard. However, level-2 cache

is also seen on the microprocessor itself. Some

manufacturers connect the microprocessor and the level-2

cache with a backside bus to improve the performance.

Recently, most manufacturers are adopting multicore

processor or chip-level multiprocessor (CMP) for their

future embedded systems to acquire additional processing

speed and to save (battery) energy.

Figure 1. Various contemporary multicore CPUs

Intel dual-core has a shared CL2 (for example, dual-core

Xenon has 64 KB I1, 64 KB D1, and one 4 MB CL2) while

AMD dual-core employs distributed and dedicated CL2s

(for example, dual-core Athlon Classic has 64 KB I1, 64

KB D1, and two 512 KB CL2s) [8]. Shared CL2 enables

each core to dynamically use up to 100% of available CL2.

Dedicated CL2s help each core to reduce latency when

there is data/code sharing between the cores.

As shown in Figure 2, Intel quad-core (example, Xenon

DP: 128 KB I1, 128 KB D1, one 8 MB CL2) has one

shared CL2 [7]. In this work, we simulate a Xenon-like

quad core with shared CL2.

Figure 2. Quad-core architectures (Intel – Kentsfield XE)

However, AMD quad-core (example, Opteron: 256 KB I1,

256 KB D1, four 2 MB CL2s) has distributed and dedicated

CL2s and a shared CL3 [5] as shown in Figure 3. CL3 of

AMD Opteron processors may be 2 MB (Santa Rosa) or 4

MB (Deerhound). In this work, we simulate an Opteron-like

quad core with dedicated CL2 (excluding the CL3).

Figure 3. Quad-core architectures (AMD - Opteron)

IBM, with a joint project with Sony and Toshiba, has

introduced the Cell multicore architecture, in a joint venture

with Sony and Toshiba, to boost up the processing speed

demanded by the 3D electronic games. The Cell chip may

have a number of different configurations. The basic

configuration is a multicore chip composed of one threaded

Primary Processing Element (PPE) and multiple Synergistic

Processing Elements (SPEs) [17][19][20][21]. In a typical

Cell processor, CL1 is dedicated to the PPE and CL2 may

be shared by the PPE and SPEs. A SPE is called a “Cell”.

Each cell may have 256 KB SRAM and a 4x128 bit

Arithmetic Logical Unit (ALU) which does the math in a

processor and 128 of 128-bit registers. The Element

Interconnect Bus (EIB) is the communication bus internal

to the Cell processor which connects the various on-chip

system elements: PPE processor, memory controller (MIC),

SPE coprocessors, and off-chip I/O interfaces.

3. RELATED WORK: CACHE MODELING

IN MULTICORE SYSTEMS

Various cache memory hierarchies have been proposed to

improve the performance and to decrease the total power

consumption of multicore embedded systems. Some

selected work relating to cache modeling in multicore

systems are discussed in this section.

In [18], the performance of shared level-2 and distributed

level-2 cache organizations has been studied using various

kind of workload. Experimental results show that the shared

level-2 cache organization outperforms the dedicated one

on stressful workloads which increase the interconnect

latencies between dedicated caches; while the dedicated

private level-2 cache organization is superior on lighter

workloads with smaller interconnect latencies. This work

does not perform energy consumption analysis which is

important for embedded systems.

In [22], a comparative performance and energy analysis is

provided for cache-coherence support schemes in multi-

processor system-on-a-chip (MPSOC). Experimental results

show that hardware based solution needs more power when

traffic grows. This work does not provide any good

solutions to improve performance and to decrease the

power consumption in MPSOC.

In [23], a hardware/software methodology is proposed to

make the caches coherent in heterogeneous multiprocessor

platforms with shared memory. This experiment shoes that

the performance improvement can be achieved with low

miss penalty at the expense of adding simple hardware,

compared to a pure software solution. Speedup can be

improved even further as the miss penalty increases. This

approach provides embedded system programmers a

transparent view of shared data, removing the burden of

software synchronization. This methodology is neither

applicable for dedicated CL2 architecture nor suitable for

analyzing energy consumption.

In [24][25], two approaches are presented to cope with the

predictability problem due to cache in real-time systems.

According to these approaches, cache contents are statically

locked so as to make memory access time and cache-related

preemption delay predictable. However, more study is

needed to see the applicability of static cache locking

techniques on various level-2 cache schemes and the impact

of these approaches on performance and energy

consumption for larger real benchmarks.

In [26], we model and simulate a multicore system using

VisualSim where level-1 cache is dedicated to each core

and level-2 cache is shared. Experimental results show that

the execution time predictability of applications running on

multicore systems can be improved with negligible impact

on the ratio of performance to energy consumption by using

cache optimization technique.

4. EXPERIMENTAL SETUP

Assumptions
The following assumptions are made to model the target

architectures (with shared CL2 and dedicated CL2) and to

run the simulation program.

1) For simplicity, both multicore systems (one with shared

CL2 and the other one with dedicated CL2) are

considered to be homogenous.

2) In both shared and dedicated CL2 architectures, CL1

size (I1 size + D1 size) is the same.

3) Interconnection delay is negligible.

4) Total CL2 sizes in both shared and dedicated CL2

architectures are the same. For shared CL2

architecture, CL2 size = k x Number of cores x CL1

size; where k = 1, 2, 4, and 8. For dedicated CL2

architecture, each CL2 size = k x CL1 size; where k =

1, 2, 4, and 8.

Simulated Architectures
In this work, our goal is to investigate the impact of level-2

cache memory hierarchies (shared and dedicated) on

performance and energy consumption. Based on

contemporary multicore processor design trends from Intel,

AMD, and IBM we simulate two similar multicore

embedded systems, one with one shared CL2 and the other

one with four dedicated CL2s.

As shown in Figure 4, we use Intel-like Advanced Smart

Cache where CL1s are dedicated to the cores and one CL2

is shared among the cores so that data is stored in one place

that each core can access. Here CL2 enables each core to

dynamically use up to 100 percent of available CL2.

Figure 4. Simulated quad-core processors – shared CL2

Also shown in Figure 5, we use AMD Opteron-like

processor where both a CL1 and a CL2 are dedicated to

each core (unlike AMD Opteron, we exclude CL3 in our

architecture). In this architecture, CL2 helps each core to

reduce latency when there is little data and/or code sharing

between the threads running on each core.

Figure 5. Simulated quad-core processors – dedicated CL2

Workload
In this work, we use workloads that are generated from Fast

Fourier Transform (FFT), Matrix Inversion (MI), and

Discrete Fourier Transform (DFT) applications. Useful

information about FFT, MI, and DFT is shown in Table 1.

Table 1. Information about FFT, MI, and DFT applications

Application

Name

Code

Size (B)

Number of

Instructions

Proc. Cycles

Needed

FFT 2335 365184 16224629

MI 1468 227518 9801353

DFT 1158 171307 7996174

We use Heptane [27] and VisualSim [28] simulation tools.

Heptane takes C code (application) as the input and

generates tree-graph showing the blocks that cause cache

misses. After post-processing the tree-graph a Miss Table

showing the number of misses caused by the blocks is

generated. Using VisualSim, a simulation platform is

developed to model and simulate multicore embedded

systems. Miss Table is used to run the VisualSim simulation

program.

5. RESULTS AND DISCUSSION

In this work, we explore the impact of the level-2 cache

hierarchies (shared and dedicated) on the performance and

energy consumption of homogeneous multicore embedded

systems. We use mean delay to express the performance

(decrease in average delay means improve in performance).

We keep level-1 cache size fixed at I1 = 2KB and D1 =

2KB. Throughout the experiment we use random cache

replacement policy and write-back write miss policy.

Assuming negligible interconnection delay and using FFT,

MI, and DFT workloads, we obtain results for embedded

systems with 4 cores. We define delay as the number of

processor cycles between the start of execution of a task

and the end. Mean delay is the average delay of all the tasks

used in VisualSim simulation. In order to weight the impact

of various CL2 sizes, we keep the total CL2 size identical

for both shared and dedicated CL2 architectures.

The average delay per core Vs total CL2 size for shared

CL2 hierarchy is shown in Figure 6. Experimental results

show that the mean delay per core decreases with the

increase of CL2 size for all three applications. The decrease

is significant for smaller CL2 size (16 to 32 KB). Results

also show that the mean delay for FFT workload is higher

than that of MI or DFT.

Delay per Core Vs Total CL2 Size (Shared CL2)

Cores = 4, I1 = 2KB, D1 = 2KB

Line = 8B, Associativity = 4-w ay

5

10

15

20

25

30

16 32 64 128

Total CL2 Size (KB)

D
e
la
y
 p
e
r
c
o
re
 (
K
P
C
)

FFT MI DFT

Figure 6. Mean delay per core for shared CL2 architecture Vs

CL2 size

For dedicated CL2 architecture, total CL2 size = number of

cores x size of each CL2 (and each CL2 size = k x CL1

size; where k = 1, 2, 4, and 8). In Figure 7, the average

delay per core Vs total CL2 size for dedicated CL2

hierarchy is shown. For all three applications, the decrease

in mean delay is significant for smaller CL2 size (16 to 32

KB). It is also noticed that the mean delay for FFT

workload is higher than that of MI or DFT.

Delay per Core Vs Total CL2 Size (Dedicated CL2)

Cores = 4, I1 = 2KB, D1 = 2KB

Line = 8B, Associativity = 4-w ay

5

10

15

20

25

30

16 32 64 128

Total CL2 Size (KB)

D
e
la
y
 p
e
r
c
o
re
 (
K
P
C
)

FFT MI DFT

Figure 7. Mean delay per core for dedicated CL2
architecture Vs CL2 size

Based on the results shown in Figures 6 and 7, for both

shared and dedicated CL2 hierarchies the mean delay per

core decreases with the increase of CL2 size for all three

applications. It is also observed that for all three

applications and all CL2 size considered the FFT workload

takes more memory access time when compared with that

of MI and DFT workload. Next, we compare the mean

delay per core and total energy consumption Vs total CL2

size for shared and dedicated CL2 hierarchies using FFT

workload (MI and DFT are expected to produce similar

impact on delay and total energy consumption).

Experimental results show that mean delay per core

decreases with the increase in CL2 size for both shared and

dedicated CL2 hierarchies [see Figure 8]. However, the

delay for shared CL2 hierarchy is significantly smaller than

that of dedicated CL2 hierarchy.

Mean Delay per Core Vs Total CL2 Size (FFT)

Cores = 4, I1 = 2KB, D1 = 2KB

Line = 8B, Associativity = 4-w ay

5

10

15

20

25

30

16 32 64 128
Total CL2 Size (KB)

D
e
la
y
 p
e
r
c
o
re
 (
K
P
C
) Dedicated CL2

Shared CL2

Figure 8. Mean delay per core Vs CL2 size

Similarly, the total energy consumption decreases with the

increase of CL2 size for both shared and dedicated CL2

hierarchies (see Figure 9). But, the decrease in energy

consumption for shared CL2 hierarchy is more significant

than that of dedicated CL2 hierarchy.

Total Power Consumption Vs Total CL2 Size (FFT)

Cores = 4, I1 = 2KB, D1 = 2KB

Line = 8B, Associativity = 4-w ay

110

130

150

170

190

210

16 32 64 128
Total CL2 Size (KB)

T
o
ta
l
P
o
w
e
r
(U
n
it
)

Dedicated CL2

Shared CL2

Figure 9. Total energy consumption Vs CL2 size

In summary, when we change the total CL2 size from 16

KB to 128 KB, the shared CL2 hierarchy reduces delay by

45% and total energy consumption by 33% but the

dedicated CL2 hierarchy reduces delay by 33% and total

energy consumption by 22%.

6. CONCLUSIONS

From recent studies we know that multicore design

improves the ratio of performance to energy consumption.

Typically in a multicore architecture, level-1 cache is

dedicated to each core. However, level-2 cache can be

shared or dedicated. Level-2 shared cache enables each

core to dynamically use up to 100% of available CL2.

Level-2 dedicated caches help each core to reduce latency

when there is data and/or code sharing between the cores. It

is not very clear how level-2 shared and dedicated cache

hierarchies impact on the performance and total energy

consumption for a target set of applications. In this paper,

we explore the impact of level-2 cache hierarchies (shared

versus dedicated) on the performance and total energy

consumption for homogeneous multicore embedded

systems. Using VisualSim, we model and simulate two 4-

core architectures (one with shared CL2 and the other one

with dedicated CL2). We use FFT, MI, and DFT workloads

(generated by Heptane package) to run the simulation

programs. For simplicity, we assume that the

interconnection delay is negligible. Experimental results

show that for any size of CL2, the mean delay and the total

energy consumption due to the shared CL2 architecture is

smaller when compared with those of dedicated CL2

architecture. This is because the workload used is lighter

from the level-2 cache's perspective. The impact may be

different if the interconnection delay is significant and

heavier workloads (like MPEG-4 application) are used.

We plan to repeat our experiments with significant

interconnection delay and running real-time applications

including MPEG-4 and H.264/AVC in the future.

7. REFERENCES

[1] Cache - Smart Computing Encyclopedia, 2008.

http://www.smartcomputing.com/editorial/dictionary/

detail.asp?guid= &searchtype=&DicID=

16600&RefType=Encyclopedia

[2] L. Schoeb, G. Darnell, “Large Processor L2 Cache

Sizes in Dell PowerEdge Servers”, Dell, 1999.

[3] R. Cook, J. Linn, C. Linn, T. Walker, “Cache

memories: A Tutorial and Survey of Current Research

Directions”, ACM, 1982, pp. 99–110.

[4] R.M. Ramanathan, “Intel Multi-Core Processors:

Making the Move to Quad-Core and Beyond”, White

Paper, 2006.

[5] V. Romanchenko, “Quad-Core Opteron: architecture

and roadmaps”, Digital-Daily.com, 2006.

[6] G. Torres, “Inside Pentium 4 Architecture”, 2005.

http://www.hardwaresecrets.com/printpage/235/1

[7] V. Romanchenko, “Evaluation of the multi-core

processor architecture Intel core: Conroe,

Kentsfield…”, Digital-Daily.com, 2006.

[8] “Multi-core (computing)”, Wikipedia, 2008.

http://en.wikipedia.org/wiki/Xeon;

http://en.wikipedia.org/wiki/Athlon

[9] D.K. Every, “IBM’s Cell Processor: The next

generation of computing?”, Shareware Press, 2005.

http://www.mymac.com/fileupload/CellProcessor.pdf

[10] D. Lenoski, J. Laudon, M.S. Lam, et al., “The

Stanford Dash Multiprocessor”, IEEE, 1992.

[11] E. Tamura, F. Rodriguez, J.V. Busquets-Mataix, A.M.

Campoy, “High Performance Memory Architectures

with Dynamic Locking Cache for real-Time Systems”,

Proceedings of the 16th Euromicro Conference on

Real-Time Systems, Italy, 2004.

[12] L. Thiele, R. Wilhelm, “Design for Timing

Predictability”, Real-Time Systems, 2004, Vol. 28,

Issue 2-3, pp. 157-177.

[13] “Improving cache performance”, UMBC, 2008.

ODI=http://www.csee.umbc.edu/help/architecture/

611-5b.ps

[14] X. Vera, B. Lisper, “Data Cache Locking for Higher

Program Predictability”, SIGMETRICS'03, CA,

USA, 2003.

[15] R. Wilhelm, J. Engblom, S. Thesing, D. Whalley,

“The Determination of Worst-Case Execution Times”,

ARTIST, 2003.

[16] R. Wilhelm, L. Thiele, “Timing Predictability — a

Must for Avionics Systems”, ARTIST, 2006.

[17] A.L. Shimpi, Understanding the Cell

Microprocessor”, CPU & Chipset, 2005.

[18] F. Sibai, “On the Performance Benefits of Sharing and

Privatizing Second and Third Level Cache Memories

in Homogeneous Multi-Core Architectures”,

Microprocessors and Microsystems, Elsevier, 2008.

[19] N. Blachford, “Cell Architecture Explained Ver2.”,

2006.

ODI= http://www.blachford.info/computer/Cell/

Cell0_v2.html

[20] J. Stokes, “Introducing the IBM/Sony/Toshiba Cell

Processor – Part II: The Cell Architecture”, 2005.

DOI=http://arstechnica.com/articles/paedia/cpu/

cell-2.ars

[21] A. Vance, “Cell processor goes commando”,

Mountain View, 2006.

ODI= http://www.theregister.co.uk/2006/01/22/

cell_mecury_army/

[22] M. Loghi, M. Poncino, L. Benini, “Cache coherence

tradeoffs in sharedmemory MPSOCs”, ACM

Transaction on Embedded Computing Systems.

Vol. 5, No. 2, 2006, pp. 383-407.

[23] T. Suh, D. Kim, H.-H.S. Lee, “Cache Coherence

Support for Non-Shared Bus Architecture on

Heterogeneous MPSOCs”, Proceedings of the 42nd

annual conference on Design automation (CA-

2005), 2005, pp. 553-558.

[24] I. Puaut, D. Decotigny, “Low-Complexity Algorithms

for Static Cache Locking in Multitasking Hard Real-

Time Systems”, IEEE, 2002.

[25] I. Puaut, “Cache Analysis Vs Static Cache Locking

for Schedulability Analysis in Multitasking Real-Time

Systems”, 2006.

http://citeseer.ist.psu.edu/534615.html

[26] A. Asaduzzaman, N. Limbachiya, I. Mahgoub, F.

Sibai, “Evaluation of I-Cache Locking Technique for

Real-Time Embedded Systems”, IEEE-IIT'07, UAE,

2007.

[27] Heptane, Heptane – A tree-based WCET analysis

tool, 2008.

ODI=http://ralyx.inria.fr/2004/Raweb/aces/uid43.html

[28] VisualSim (VisualSim Architecture), Mirabilis

Design, Inc., 2008.

ODI=http://www.mirabilisdesign.com/

